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ABSTRACT 
 

 Polymer matrix composites (PMCs) are increasingly being used in aerospace 

structures that are expected to experience complex dynamic loading conditions 

throughout their lifetime. As such, a detailed understanding of the high strain rate 

behavior of the constituents, particularly the strain rate, temperature, and pressure 

dependent polymer matrix, is paramount. In this paper, preliminary efforts in modeling 

experimentally observed temperature rises due to plastic deformation in PMCs 

subjected to dynamic loading are presented. To this end, an existing isothermal 

viscoplastic polymer constitutive formulation is extended to model adiabatic conditions 

by incorporating temperature dependent elastic properties and modifying the 

components of the inelastic strain rate tensor to explicitly depend on temperature. It is 

demonstrated that the modified polymer constitutive model is capable of capturing 

strain rate and temperature dependent yield as well as thermal softening associated with 

the conversion of plastic work to heat at high rates of strain. The modified constitutive 

model is then embedded within a strength of materials based micromechanics 

framework to investigate the manifestation of matrix thermal softening, due to the 

conversion of plastic work to heat, on the high strain rate response of a T700/Epon 862 

(T700/E862) unidirectional composite. Adiabatic model predictions for high strain rate 

composite longitudinal tensile, transverse tensile, and in-plane shear loading are 

presented. Results show a substantial deviation from isothermal conditions; significant 

thermal softening is observed for matrix dominated deformation modes (transverse 

tension and in-plane shear), highlighting the importance of accounting for the 

conversion of plastic work to heat in the polymer matrix in the high strain rate analysis 

of PMC structures.  
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INTRODUCTION 
 

 Polymer matrix composites (PMCs) are increasingly being used in the aerospace 

industry for high velocity ballistic impact applications. One such application is jet 

engine fan blade containment systems, which are required by the FAA to completely 

contain loose fan blades in the event of a blade-out. To demonstrate the capability for 

engine cases to contain loose fan blades and certify them for commercial use, 

manufacturers must perform destructive testing, which is time consuming and 

expensive. Therefore, to reduce the amount of destructive testing necessary to certify 

fan blade containment systems, accurate modeling of the high strain rate deformation 

response of PMCs is of utmost importance. 

 Despite the benefits offered by PMCs, including superior specific strength and 

stiffness, as well as the ability to tailor the mechanical properties to specific applications, 

the development of predictive computational models for high strain rate loading 

conditions is complicated by the material heterogeneity and anisotropy, as well as the 

well-known strain rate, temperature, and pressure dependence of the polymer matrix 

constituent. Moreover, as the rate of deformation increases, the conditions transition 

from isothermal to adiabatic. In the case of high strain rate ballistic impact events, heat 

is generated locally within the material due to the conversion of plastic work to heat. 

However, the extremely short duration of impact events does not allow sufficient time 

for heat to conduct away from regions of localized plastic deformation within the 

material. 

The work of Chou et al. [1] is largely considered to be the first attempt at 

measuring heat generation due to mechanical deformation of polymers; four hard 

plastics were tested across a range of strain rates and the corresponding temperature 

rises were measured using thermocouples. Rittell [2] used embedded thermocouples to 

investigate temperature rises due to plastic deformation of polycarbonate at high strain 

rates, reporting temperature rises up to 40°C. Garg et al. [3] used infrared imaging 

techniques to measure temperature rises in an amorphous thermoplastic and a thermoset 

epoxy during high strain rate compression. Infrared imaging of preliminary impact 

experiments conducted by Johnston et al. [4] on triaxially braided composite panels with 

a toughened thermoset polymer matrix have shown local temperature rises above the 

glass transition temperature of the matrix constituent. These temperature rises cause 

thermal softening of the matrix and subsequent deformation localization. Thus, in order 

to develop predictive models for the high strain rate response of PMCs, it is necessary 

to accurately model heat generation in the polymer matrix due to the conversion of 

plastic work to heat.  

 In this work, a strain rate and pressure dependent viscoplastic polymer 

constitutive model [5] is further extended to nonisothermal conditions to model 

adiabatic heating due to high strain rate plastic deformation. The ability of the modified 

constitutive model to capture the thermal softening associated with plastically 

deforming polymers at high rates of strain is demonstrated by simulating the tensile and 

shear response of Epon 862 (E862) thermoset epoxy resin over a range of strain rates 

and temperatures. The modified constitutive model is then implemented within a 

strength of materials based micromechanics framework to study the effects of adiabatic 

heating on the high strain rate response of a T700/E862 unidirectional composite. The 

micromechanics model is suitable for implementation in a finite element software as a 

user-defined material subroutine, whereby it can be invoked at each macroscale 



integration point in the finite element mesh. The modified constitutive model is shown 

to be able to capture the thermal softening associated with plastically deforming 

polymers at high rates of strain as well as capture the effects of adiabatic heating on the 

high strain rate response of a T700/E862 unidirectional composite.  

 

 

POLYMER CONSTITUTIVE MODEL  

 

The unified state variable viscoplastic constitutive model, originally developed 

by Bodner and Partom [6] to model the strain rate dependent deformation response of 

metals above one half of their melting temperature, was modified by Goldberg et al. [5] 

to include hydrostatic stress effects, which can be significant in polymers. The model is 

unified in the sense that there is no distinction between creep strain and plastic strain 

[7]; instead, a single (unified) inelastic strain that is assumed to be very small during 

elastic deformation, is used for all levels of stress. Additionally, the model does not 

require a defined yield stress; strain rate dependent yield is captured by the evolution of 

state variables with the effective deviatoric inelastic strain rate. A brief overview of this 

model is as follows. An inelastic potential function is defined as 

 

𝑓 =  √𝐽2 + 𝛼𝜎𝑘𝑘 (1) 

 

based on the Drucker-Prager yield criterion, where 𝐽2 is the second invariant of the 

deviatoric stress tensor, 𝜎𝑘𝑘 is the trace of the Cauchy stress tensor, and 𝛼 is a time-

dependent state variable that controls the influence of hydrostatic stress effects. An 

associative flow rule is used, where the components of the inelastic strain rate tensor, 

𝜖�̇�𝑗
𝐼 , are assumed to be equal to the product of the partial derivative of the inelastic 

potential function, 𝑓, with respect to the components of the Cauchy stress tensor, 𝜎𝑖𝑗, 

and the scalar rate of the plastic multiplier, �̇�, as follows:  

 

휀𝑖𝑗̇ = �̇�
𝛿𝑓

𝛿𝜎𝑖𝑗
. (2) 

 

To determine the final form of the expression for the components of the inelastic strain 

rate tensor, 휀𝑖𝑗̇ , the partial derivative of the inelastic potential function (Equation 1) with 

respect to the components of the Cauchy stress tensor is evaluated and substituted into 

Equation 2. By taking the tensor product of the resulting expression with itself, solving 

for the rate of the plastic multiplier, substituting it back into Equation 2, and defining 

the effective stress, 𝜎𝑒, and effective deviatoric inelastic strain rate, 𝑒𝑒
�̇� , respectively, as 

 

𝜎𝑒 = √3𝑓 = √3𝐽2 + √3𝛼𝜎𝑘𝑘 

 

(3) 

휀𝑒
�̇� = 𝑒𝑒

�̇� = √
2

3
𝑒𝑖𝑗

�̇� 𝑒𝑖𝑗
�̇�  

(4) 

𝑒𝑖𝑗
�̇� = 휀𝑖𝑗

�̇� − 휀𝑚
�̇� 𝛿𝑖𝑗, (5) 

 



where 휀𝑚
�̇�  is the trace of the inelastic strain rate tensor, 휀𝑒

�̇�  is the effective inelastic strain 

rate, and 𝛿𝑖𝑗 is the Kronecker delta, an expression for the rate of the plastic multiplier is 

obtained. By defining 

 

√3

2
휀𝑒

�̇� = 𝐷0𝑒𝑥𝑝 [−
1

2
(

𝑍

𝜎𝑒
)

2𝑛

] 
(6) 

  

based on the work of Bodner and Partom [6] & Stouffer and Dame [8], substituting the 

rate of the plastic multiplier back into Equation 2, and simplifying, the final form of the 

expression for the components of the inelastic strain rate tensor are obtained as 

 

휀𝑖𝑗
�̇� = 2𝐷0𝑒𝑥𝑝 [−

1

2
(

𝑍

𝜎𝑒
)

2𝑛

] (
𝑆𝑖𝑗

2√𝐽2
+ 𝛼𝛿𝑖𝑗). 

(7) 

 

In Equations 6 and 7, n is a state variable that controls strain rate sensitivity, 𝑆𝑖𝑗 are the 

components of the deviatoric stress tensor, Z is a state variable that represents the 

resistance to internal stress (captures strain hardening), and D0 is a state variable that 

represents the maximum inelastic strain rate. The time-dependent state variables, Z and 

𝛼, evolve with the effective deviatoric inelastic strain rate as follows:  

 

�̇� = 𝑞(𝑍1 − 𝑍) 𝑒𝑒
�̇�  

 

(8) 

�̇� = 𝑞(𝛼1 − 𝛼) 𝑒𝑒
�̇� , (9) 

 

where Z1 and 𝛼1 are the final (maximum) values of Z and 𝛼, respectively, and q is a 

constant that represents the strain hardening rate. Note the initial values of Z and 𝛼 are 

denoted as Z0 and 𝛼0, respectively. The model requires the determination of seven state 

variables, D0, n, Z0, Z1, q, 𝛼0, and 𝛼1. Further details of the model can be found in 

Goldberg et al. [5].  

It is important to note that the polymer constitutive model in its current state is 

isothermal. However, as aforementioned, many researchers [1-4] have demonstrated 

that a significant amount of heat is generated in plastically deforming polymers at high 

strain rates, leading to thermal softening. Therefore, explicitly modeling heat generation 

due to high strain rate plastic deformation is necessary to accurately predict the behavior 

of polymers and PMC structures subjected to dynamic loading conditions.  

 

Temperature Effects  

 

To account for the temperature dependence of plastic flow, the components of 

the inelastic strain rate tensor are now modified to explicitly capture temperature-

dependence based on the Arrhenius equation for nonisothermal processes 

 

휀̇𝑒𝑥𝑝(
−𝑄

𝐾𝑇
) (10) 

 



where Q is the activation energy, K is Boltzmann’s constant, and T is the absolute 

temperature. By inserting the dimensionless expression (
−𝑄

𝐾𝑇
) into the exponential term 

in the original expression for the components of the inelastic strain rate and defining a 

new state variable �̅� as  

�̅� =
𝑄𝑍

𝐾
, (11) 

the new temperature-dependent components of the inelastic strain rate tensor can be 

expressed as  

 

𝜖𝑖𝑗
�̇� = 2𝐷0exp (

−1

2
(

𝑍

𝑇𝜎𝑒
)

2𝑛

)(
𝑆𝑖𝑗

2√𝐽2
+  𝛼𝛿𝑖𝑗), 

(12) 

 

where �̅� is a temperature-dependent state variable that controls the resistance to internal 

stress at a given temperature, and the other parameters are the same as defined 

previously. Following the work of Bhattachar and Stouffer [9] it is assumed that �̅� 

evolves in the same way as Z, that is,  

 

�̇̅� = 𝑞(�̅�1 − �̅�)𝑒𝑒
�̇� , (13a) 

 

which can be integrated in time to yield 

 

�̅� = �̅�1 − (�̅�1 − �̅�0)exp (−𝑞𝑒𝑒
𝐼), (13b) 

 

where �̅�0 and �̅�1 are the temperature-dependent initial and final values of �̅�, 

respectively, and q is the hardening rate. Under isothermal conditions, Equations 13a 

and 13b are identical. However, under nonisothermal conditions, Equation 13b should 

be used in lieu of Equation 13a to allow the value of �̅�0 to change with temperature; if 

the differential form is used, �̅� is initially equal to �̅�0 at the initial temperature, but is 

never updated to reflect the current temperature. It should be noted that the dimension 

of the hardening state variable Z in the original model [5] is stress whereas now, after 

the introduction of the absolute temperature in Equation 12, the dimension is stress times 

absolute (Kelvin) temperature.  

In order to determine the values of the state variables, the procedure outlined in 

Goldberg et al. [5] is utilized. The procedure is based on isothermal test data at different 

temperatures; once the temperature-dependent state variables are known at multiple 

temperatures they can be expressed as a function of temperature. 

 

Conversion of Plastic Work to Heat  

 

The heat energy equation, which expresses the relationship between mechanical 

deformation and spatial-temporal temperature change, is as follows 

 

𝑘∇2𝑇 − 𝛼𝑀(3𝜆 + 2𝜇)𝑇휀�̇�𝑘
𝑒 + 𝛽𝝈: �̇�𝑰 = 𝜌𝐶�̇�, (16) 



 

where k is the thermal conductivity, T is the temperature, 𝛼𝑀 is the coefficient of thermal 

expansion, 𝜆 and 𝜇 are Lame’s constants, 휀𝑘𝑘
𝑒  is the elastic volumetric strain, 𝝈 is the 

Cauchy stress tensor, 𝜺𝐼 is the inelastic strain tensor, 𝜌 is the density, 𝐶 is the specific 

heat, and 𝛽 is the inelastic heat fraction, which represents the proportion of plastic work 

converted to heat. The dot superscript denotes a time derivative. For adiabatic 

conditions, the thermoelastic and conduction terms in Equation 1 can be ignored [2, 10, 

11] and the heat energy equation reduces to 

  

𝛽𝝈: �̇�𝑰 = 𝜌𝐶�̇�. (17) 

 

Assuming that the parameter 𝛽 is known, either measured experimentally or assumed, 

Equation 2 can be integrated in time to compute the temperature change due to the 

conversion of plastic work to heat at each timestep in an incremental solution procedure.  

 

Temperature Dependence of Elastic Properties 

 

A novel time-temperature shifting methodology, similar to the Decompose-

Shift-Reconstruct (DSR) method originally developed by Mulliken and Boyce [12], is 

utilized to compute the temperature and strain rate dependent shifts in elastic moduli 

based on dynamic mechanical analysis (DMA) tests conducted on a neat resin at various 

frequencies. Since the frequency at which a DMA test is conducted corresponds to a 

particular strain rate (depending on the specimen geometry), the rate-dependent shifts 

in the shear modulus can be obtained by conducting DMA tests at different strain rates, 

assuming that the shear modulus is equal to the shear storage modulus. A schematic of 

the shifting of the shear storage modulus versus temperature curve with strain rate is 

shown in Figure 1 for E862 DMA data [13]. The shifting of the DMA data allows the 

elastic properties to be determined at various strain rates (can also be extrapolated to 

higher/lower strain rate values than those at which the DMA tests were conducted) and 

temperatures. In this work, the DMA shear storage modulus versus temperature curve 

was taken to shift by 10K per decade strain rate for the Epon 862 resin. It should be 

noted that in this work, Poisson’s ratio has been assumed to be independent of strain 

rate and temperature [10].  

 

 

Figure 1: Illustration of shifting of DMA data with increasing strain rate 



MICROMECHANICAL MODELING 

 

To predict the effective behavior of a unidirectional composite, a MATLAB 

code has been developed in which the modified constitutive model is implemented 

within a strength of materials based micromechanics framework [14]. In the 

micromechanics model, the microscale repeating unit cell (RUC) consists of four 

subcells: three matrix and one fiber. A schematic of the microscale RUC is shown in 

Figure 2.  By applying appropriate uniform stress and uniform strain assumptions, as 

well as displacement and traction continuity conditions between adjacent subcells and 

adjacent unit cells, the effective response of a unidirectional composite can be predicted 

based on the behavior of the individual constituents. The formulation used in this work 

is based on the reformulated Generalized Method of Cells (GMC) described in 

references [15] and [16].  

 

 
Figure 2: Schematic of four subcell repeating unit cell for micromechanics analysis 

 

RESULTS 

 

Monolithic Polymer Response 

 

To demonstrate the capability of the modified constitutive model, the tensile and 

shear deformation response of the Epon 862 resin are simulated across a range of strain 

rates and temperatures. The resin material properties and model parameters used in the 

simulations are presented in Table I. The modified constitutive model is calibrated 

against available experimental data [13, 17]. Note that the inelastic heat fraction has 

been set to zero in these simulations (no adiabatic heating) due to the fact that many of 

the tests were conducted at low strain rates, where the adiabatic heating due to plastic 

straining can be assumed to be small, and the available tests at high strain rates failed at 

relatively low strains, where the material response displayed minimal nonlinearity, and 

thus likely limited adiabatic heating due to plastic deformation.  Due to the minimal 

adiabatic heating that is likely present in these tests, the assumption can be made that 

the majority of the post-peak strain softening observed in the low strain rate test data is 

intrinsic strain softening, which is not currently modeled. Figure 3 shows the shear 

stress-strain response of Epon 862 epoxy resin at room temperature (30°C) for various 

strain rates whereas Figures 4a, 4b, and 4c show the tensile stress-strain response at 

room temperature, 50°C, and 80°C, respectively, for various strain rates. Reasonably 



good correlations with experimental data are observed for all the strain rates and 

temperatures for both tensile and shear loading. 

 

Table I: E862 Material Properties and Goldberg Model Parameters 

Young’s Modulus *Taken from DMA curve (Figure 1)* 

Poisson’s Ratio 0.4 

Density (g/m3) 1.2e6 

CTE (1/K) 5.4e-5 

D0 1e6 

n 0.6454 

q 75.4973 

𝛼0 0.05 

𝛼1 0.075 

𝑍0(𝑇) (Pa-K) −(1.526𝑒9)𝑇 + 6.8897𝑒11 

𝑍1(𝑇) (Pa-K) −(2.7062)𝑇 + 1.3332𝑒12 
 

 

 

 

Figure 3: Shear stress-strain response of Epon 862 resin at various strain rates 

 

 



a)  

b)  

c)  

Figure 4: Tensile stress-strain response of Epon 862 resin at a) room temperature, b) 50℃ and c) 80℃ 

at various strain rates 

 



The effect of varying the inelastic heat fraction on the tensile stress-strain 

response of Epon 862 resin is investigated. Simulations conducted at room temperature 

at a strain rate of 1000 s-1, and the corresponding temperature history, for various 

inelastic heat fractions are presented in Figure 5. More thermal softening is observed 

with increasing values of the inelastic heat fraction, β, as expected.   

 

 

Figure 5: Tensile stress-strain response of Epon 862 resin at room temperature at a strain rate of 1000 

s-1 and corresponding temperature history with various inelastic heat fractions 

 

Unidirectional Composite Response 

 

 The effects of adiabatic heating on the axial tensile, transverse tensile, and in-

plane shear response of a unidirectional composite are investigated next.  Simulation 

results are presented for a T700/E862 unidirectional composite with a 60% fiber volume 

fraction at strain rates of 100 s-1 and 1000 s-1. The T700 fiber properties used in the 

simulations are presented in Table II [18]. It should be noted that, currently, there is no 

unidirectional T700/E862 composite test data available; this material system was 

selected due to the availability of fiber and matrix material properties and experimental 

data. Because of the lack of experimental data for unidirectional T700/E862 composites, 

the micromechanics model predictions for the isothermal case are validated with those 

obtained using the MAC/GMC micromechanics code [19]; To examine qualitatively 

the effects of adiabatic heating, simulations were also conducted with a nonzero 

inelastic heat fraction. In the isothermal case, the results are identical to those of 

MAC/GMC. To demonstrate the model capability, the inelastic heat fraction is set to 

unity (i.e. all plastic work is assumed to be converted to heat) for all the nonisothermal 

results that follow, which means the temperature rises presented in this section represent 

an upper bound.  

The response of the unidirectional composite subjected to axial tensile loading 

at strain rates of 100 s-1 and 1000 s-1 at room temperature (30°C) is presented in 

Figures 6a and 6b, respectively. Note that linear elastic response is observed for both 

strain rates. No significant thermal softening is observed due to adiabatic heating in 

the matrix although the average temperature rises in the RUC for 100 s-1 and 1000 s-1 



strain rate simulations were 5.91°C and 6.97°C, respectively. This is because the axial 

tensile response of unidirectional composites is fiber dominated; the fibers have been 

modeled as transversely isotropic and linear elastic.  

 

Table II: T700 Fiber properties 

Axial Young’s Modulus 230 GPa 

Transverse Young’s Modulus 15 GPa 

Axial Shear Modulus 0.2 

Transverse Shear Modulus 0.3 

In-Plane Shear Modulus 27 GPa 
 

 

a)  

b)  

Figure 6: Axial tensile response of the unidirectional composite subjected to axial tensile loading at 

strain rates of a) 100 s-1 and b) 1000 s-1 at room temperature (°C) 



 

 The response of the unidirectional composite subjected to transverse tensile 

loading at strain rates of 100 s-1 and 1000 s-1 at room temperature are shown in Figures 

7a and 7b.   

 

a)  

b)  

Figure 7: Transverse tensile response of a unidirectional composite subjected to transverse tensile 

loading at strain rates of a) 100 s-1 and b) 1000 s-1 at room temperature 

 

Unlike the axial tensile response, the transverse tensile response is significantly affected 

by the thermal softening of the matrix. This is expected since the transverse tensile 

response of unidirectional composites is matrix dominated. The RUC average 

temperature rises for the 100 s-1 and 1000 s-1 strain rate simulations were 25.27°C and 

29.89°C, respectively. However, the maximum local (subcell level) temperature rises 

for 100 s-1 and 1000 s-1 strain rate simulations were 103.92°C and 121.26°C, 



respectively. Figures 8a and 8b show the response of the unidirectional composite 

subjected to in-plane shear loading at room temperature at engineering shear strain rates 

of 100 s-1 and 1000 s-1, respectively. Significant thermal softening due to adiabatic 

heating in the matrix is observed for in-plane shear loading. The RUC average 

temperature rises for the 100 s-1 and 1000 s-1 engineering shear strain rate simulations 

were 10°C and 11.85°C, respectively. The maximum local (subcell level) temperature 

rises were 48.25°C and 58.32°C, respectively. 

 

a)  

b)  

Figure 8: In-plane shear response of unidirectional composite subjected to in-plane shear loading at 

engineering shear strain rates of a) 100 s-1 and b) 1000 s-1 at room temperature 

 

 

 

 

 



CONCLUSION  

 

In this work, preliminary efforts in modeling temperature rises due to matrix 

plastic deformation in PMCs subjected to dynamic loading conditions were presented. 

An existing viscoplastic polymer constitutive model was extended to nonisothermal 

conditions to model heat generation due to plastic deformation of the polymer matrix. 

A novel time-temperature shifting methodology, similar to the DSR method described 

by Mulliken and Boyce, was used to compute temperature and strain rate dependent 

shifts in elastic moduli based on DMA tests conducted on neat resin at various 

frequencies. Furthermore, the components of the inelastic strain rate tensor were 

modified to explicitly depend on temperature and the temperature dependence of state 

variables was assessed based on isothermal tensile and shear tests conducted on neat 

epoxy resin at various strain rates. The modified constitutive model was shown to be 

able to capture the tensile and shear behavior of Epon 862 epoxy resin across a range of 

temperatures and strain rates. The modified constitutive model was then embedded 

within a strength of materials based micromechanics framework to investigate the 

manifestation of matrix thermal softening, due to the conversion of plastic work to heat, 

on the high strain rate response of a T700/E862 unidirectional composite. Significant 

thermal softening was observed in high strain rate transverse tension and in-plane shear 

simulations of the unidirectional composite, whereas a nominal amount of thermal 

softening was observed in longitudinal tension. It has been shown in this work that 

adiabatic model predictions show a significant deviation from isothermal conditions and 

thus must be accounted for in modeling the high strain rate behavior of PMC structures.  
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